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A DOMAIN STRATEGY

FOR COMPUTER PROGRAM TESTING

Lee J. White, Edward I. Cohen, and B. Chandrasekaran

L. 
EXTENDED ABSTRACT

Computer programs contain two types of errors which have been identified as
computation errors and domain errors. A domain error occurs when a specific input

U follows the wrong path due to an error in the control flow of the program. A path
contains a computation error when a specific input follows the correct path, but an
error in some assignment statement causes the wrong function to be computed for one
or more of the output variables. A testing strategy has been designed to detect
domain errors, and the conditions under which this strategy is reliable are given

Li and characterized. A by—product of this domein strategy is a partial ability to de-
tect computation errors. It is the objective of this study to provide an analytical
foundation upon which to base practical testing implementations.

There are limitations inherent to any testing strategy, and these also constrain
the proposed domain strategy. One such limitation might be termed coincidental
correctness, which occurs when a specific test point follows an incorrect path,
and yet the output variables coincidentally are the same as if that test point were
to follow the correct path. This test point would then be of no assistance in the
detection of the domain error which caused the control flow change. No test gener—

Li ation strategy can circumvent this problem. Another inherent testing limitation Ms
been previously identified as a missing path error, in which a required predicate
does not appear in the given program to be tested. Especially if this predicate were
an equality, no testing strategy could systematically determine that such a predicate
should be present.

[1 The control flow statements in a computer program partition the input space into
a Set of mutually exclusive domains, each of which corresponds to a particular pro-
gram path and consists of input data points which cause that path to be executed.

F The testing strategy generates test points to examine the boundaries of a domain to
L detect whether a domain error has occurred, as either one or more of these boundaries

will have shifted or else the corresponding predicate relational operator has changed .
If test points can be chosen within c of each boundary, the strategy is shown to

[j be reliable in detecting domain errors of magnitude greater than e, subject to the
following assumptions:

11 (1) coincidental correctness does not occur;
LI (2) missing path errors do not occur;

(3) predicates are linear in the input variables;

[j (4) the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing process,
and cannot be entirely eliminated. However, recognition of these potential problems
can lead to improved testing techniques. The domain testing method has been shown
to be applicable for nonlinear boundaries , but the number of required test points
may became inordinate and there are complex probl ems associated with processing non-
linear boundaries in higher dimensions . The continuou s input space assumption is

3. ~~ not really a limitation of the proposed testing method , but allows the parameter £
to be chosen arbierat~i1y email. An error analysis for discrete spaces is available
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and the testing strategy has been proved viable as long as the size of the domain is
not comparable to the discrete resolution of the space.

Next let us consider two further assumptions:
p (5) predicates are simple; and

(6) adjacent domains compute different functions.

If assumptions (5) and (6) are imposed, the testing strategy is considerably

U simplified, as no more than one domain need be examined at one time in order to
select test points. Moreover, the number of test points required to test each
domain grows linearly with both the dfmeneionality of the input space and the
number of predicates along the path being tested.

The only completely effective testing strategy is an exhaustive test which is
• • totally impractical. The domain testing strategy offers a substantial reduction in

the high cost of computer program testing, and yet can reliably detect a major class
of errors which have been characterized. In addition, other types of errors can be
detected, such as computation errors and missing path errors, but this detection
cannot be guaranteed.

The domain strategy is currently being implemented, and will be utilized as an

U experimental facility for subsequent research. A most important contribution would
• be to indicate both progra~aming language constructs and programming techniques which

are easier to test, and thus produce more reliable software.
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I CHAPTER 1

I
ii INTRODUCTION

Program testing is an inherently practical activity, since every

h computer program must be tested before any confidence can be gained that

the program performs its intended function. Some of the best designed

software has required that nearly as much effort be spent planning and

implementing the testing process as was invested in the actual coding.

Li What the practitioner needs are better guidelines and systematic approaches

in the design of the testing process to replace the ad hoc approach which
3.

• is now so prevalent in the testing of computer software.

It would be ideal if there existed a “theory of testing” which could

be used to rigorously select program test points. The problem has unfort—

unately proven so intractable that no comprehensive testing theory exists.

I Research by Coodenough and Gerhart [7] and Howden [8,9) has resulted in an

accepted body of theory concerning testing, and has provided a rigorous basis

for further research in this area.

The objective of this paper is to present a methodology for the automatic

selection of test data. Under appropriate assumptions, this methodology will

• generate test data which will detect a particular class of errors in a

program, viz , “domain errors” as defined by Rowden (9] The proposed aetho—

dology is also described in greater detail in Cohen and White (31 and in Cohen (4].

The goal of the tasting process is limited to the successful detection of

U
Li ’
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a program error if any exists. Any attempt to identify the error , its cause,

or an appropriate correction is properly categorized as debugging, and is

beyond the scope of our goal in the testing process . Thus testing is essen-

tially error detection, while debugging is the more difficult process of

error correction. Of course, in practice these two activities usually

overlap and are frequently combined into a single testing/debugging phase in

the software development cycle.

An important assumption in our work is that the user (or an “oraele”)

is available who can decide unequivocally if the output is correct for the

specific input processed. The oracle decides only if the output values

are correct, and not whether they are computed correctly. If they are L
incorrect, the oracle does not provide any information about the error

and does not give the correct output values.

The organization of the report is as follows. In Chapter 2, some

preliminary concepts are defined and discussed. Some assumptions must

be made concerning the language in which the given computer program is

written, and the ramifications of certain language constructs are explored .

The important concepts of program path and path psedicates, together

with domains, are defined and characterized. The case of linear

predicates is given particular emphasis, since, in that situation, the

domains assume the simple form of convex polyhedra in the input space. I I
Logical errors in a computer program can be viewed as belonging to • 

•

one of two classes of errors , viz., “domain errors” and “computation

errors ” . Info rm ally , a domain error occurs when a specific input follows

the wrong path due to an error in the control flow of the program. A path

contain, a computation error when a specific input follow, the correct

path , but an error in .~~~ a.aigza.nt statement causes the wrong function

to be cc~~uted for one or more of the output variables .

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - — ~.
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• The third chapter rigorously defines these error classes, and explores
• the ways in which they might arise. The proposed methodology, called the

domain strategy-, is designed specifically to detect domain errors. In this
I chapter, we will discuss two fundamental limitations inherent to any finite test

I strategy . Once such limitation might be termed coincidental correctness.

• This occurs when the computation for a specific test point is incorrect, but

the output value happens to coincide with the correct value. This test point

would then be of no assistance in the detection of the domain error which

fi caused the change in control flow. Another inherent testing limitation has

• been identified by Howden [9], and might be called a missing path. error, in

• which a required predicate does not appear in the given program to be tested.

II This could result in a situation where no testing strategy can systematically

• determine that such a predicate should be present.

The domain strategy is examined in Chapters 4 and 5. This strategy is

developed by utilizing the structure of the input space corresponding to the

1. program. More specifically, the control flow partitions the input space into

[ a set of mutually exclusive domains. Each domain corresponds to a parti cular

path in the program in the sense that the set of input data points in that

II domain will cause the corresponding path to be executed. The strategy proposed

U 
is path—oriented; in testing a particular path , we are acutaliy testing the

computations performed by the program over a specific input space domain.

U Given a particular path, the form of the boundary of the corresponding

P • domain is completely determined by the predicates in the control statements

encountered in the path. Thus, an error in such a predicate will be

reflected as a shift in the boundary of the corresponding domain. The
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H
testing strategy to be described tests a path for domain errors, i.e., detects

domain boundary shifts by observing the output values for a finite number of

test data having a prescribed geometrical relationship to the entire domain

and its boundary. These output values are computed by executing the

sequence of assignment statements constituting the path. The method requires I

no information other than the successfully compiled program for selecting

effective test data. Thus the problem has been converted from its usual form as

an informal study of programs and programming to a more formal investigation

- of the geometry of input space domains.

• The strategy is initially described for the case of linear predIcates

and a two—dimensional input space. For the linear case, it is shown that, 1
under appropriate assumptions, the number of test points to reliably test a

domain grows only linearly with the number of predicates along the path and

with the diaensionality. The techniques are then extended to N dimensions,

and various other extensions are considered, including nonlinear predicates. L
A domain boundary error analysis is presented in Chapter 6, vhicI~ is helpful

in choosing the best locations for test points. The application uf the domain

strategy in discrete spaces is analyzed to study the effect of roundoff error

in selecting test points.

In the conclud ing Chapter 7 a number of open questions generated by this

investigation are presented, and the prospects for the practical application

of the domain testi ng strategy are evaluated.
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I
CHAPTER 2

I
BACKGROUND AND PRELI}EINARIES

2.]. Programming Languagç Assumptions

II In order to investigate domain errors, we need to consider the language

in whir’ ..grams will be written. The control structures should be simple

and concise, and ahould resemble those available in most procedure—oriented

languages. For simplicity we assume a single real—valued data type, and this

1. is converted to integer values for use as DO—loop indices. Because this

is a path—oriented approach, no extra control flow problems are introduced by

block structure. Thus no provision i~ made for block structure, as it would

only add extra bookkeeping to keep track of local variables and block

- invocation or exit.

A number of programming language features are assumed not to occur in the

programs we are to analyze for domain errors. The first feature is that of

arrays; despite the fact that arrays coumionly occur in programs, a predicate

which refers to an element of an input array can cause major complications

(R~~*i~oorthy [11]). A second class of language features which will be excluded

in our analysis is that of subroutines and functions. The problems of side

• effects and of parameter passing pose difficulties for domain testing. The

third class of features which are not currently analyzed by domain testing

include nonnumerical data types such as character data and pointers. These

are admittedly very important features, and further research is needed to

Ii investigate whether these features pose any fundamental limitations to the

domain testing strategy.

Since input/output processing is so closely linked to a machine or compiler

environment, we will assume that all I/O errors have previously been eliminated.

Thus only the most elementary I/O capabilities are provided; input is provided

I] by a simple READ statement, and output is accomplished with a simple WRITE

1] 
- 

statement. 
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• The types of control flow constructs investigated in this research include

sequence, alternation, and iteration control. Since the analysis is path—

• oriented, GO—TO statements could be included without adversely affecting any

results, except that program paths could become quite complex.

All computation is accomplished by means of arithmetic assignment state-

ments which also provide the basic sequential flow of control. In each
L

statement a single variable is assigned a value. The right hand side of an

assignment statement is an arithmetic expression using variables, constants,

and a set of basic arithmetic operators (+, —, *, / ) .

The general predicate form used for control flow is a Boolean combination

of arithmetic relational expressions. The logical operators OR and AND are

used to form these Boolean combinations. Each arithmetic relational expression

contains a relational operator from the set (< , > , , < , > , #). These operators

form a complete set, and thus the logical operator NOT is unnecessary. If a

predicate consists of two or more relational expressions with Boolean operators, I
then it is a compound predicate. A simple predicate consists of just a single

relational expression.

The alternation type of control flow is achieved by using the IF—THEN—

ELSE—ENDIF construct. The conditional associated with the IF statement is a

general predicate. Any well—formed program segment, including the null program

segment, can be used in the THEN and ELSE portions of the IF construct. The

ENDIP statement is just a delimiter for the IF construct, which clarifies

the nesting structure and eliminates any potentially ambiguous ELSE clause.

A general iteration construct is included which consists of a DO

statement, loop body, and ENDDO delimiter. The DO statement can be in one of fl
three forms:

1) DO I — INIT, FINAL, INCR;

2) DO WHILE (general predicate);

3) DO I — INIT, FINAL, !NCR WHILE (genera l predicate) .

— I~
j

4 
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Li
[j The loop body can be any welL-formed program segment, and the ENDDO is just a

delimiter to clarify the scope of the iteration.

The variables used in a program are divided into three classes. If a variable

appears in a READ or WRITE statement, it is classified as an inpU~t or outp~t

I. variable respectively; all other variables are called program variables.

In order to produce a clear delineation between the three types of variables,

we assume that a given variable belongs to only one of the above three classes.

2.2 Program Paths and Path ~re4icates

L A program can be represented as a directed graph C — (V,A), where V is

a set of nodes and A is the set of arcs or directed edges between nodes. In

the language discussed in Section 2.1, we have d~fined a set of basic progrart

elements which consists of a READ, WRIT E , assignment, IF, and DO statement,

together with the ENDIF and ENDDO delimiters. The directed graph representation

of a program will contain a node for each occurrence of a basic program element,

and an arc for each possible flow of control between these elements. While THEN

and ELSE statements do not explicitly appear in the digraph, the actions

I associated with them will be represented as nodes in the digraph.

A walk in a digraph is defined as an alternating sequence of nodes and

arcs (v1, A12 v2, A23 ...., A.
~ l k  ~~ 

such that each arc Ai,i+i is directed ~rom

• node v1 to node v~~1 . A control path is then defY~ned to be a walk in the directed

graph beginning ~ith the node for the initial statement and terminating with the

•
~ node for the final statement. It should be noted that two walks which differ

only in the number of times a particular loop in the program is executed

[] will be defined as two distinct control paths . Thus the number of control paths

in a program can be infinite.

Every branch point of the progra m is associated with a general predicate.

[] This predicate evaluates to true or false , and its value determin es which outcome

:~ of the branch will be follovsd A predi cat , is generated each time control
v~1

~~ ~ Ii reaches an IF or DO statem ent in the given language . The path condition is the

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _— - — 
- 

-~ — ~ • ~- -... ~~~~~~~~~~~ 
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compound condition which must be satis fied by the input data point in order for the

control path to be executed . It is the conjunction of the individual predicate

conditions which are generated at each branch point along the control path.

Not all the control paths that exist syntactically within the program are

executable. If input data exist which satisfy the path condition, the control

path is also an execution path and can be used in testing the program. If the

• path condition is not satisfied by any input value, the path is said to be

infeasible, and is of no u~e in testing the program.

A simple predicate is said to be linear in variables V1, V2 , V

if it is of the form

A V + A V  +. ...+AV ROP K

where K and the A1 are constants, and ROP represents one of the relational [
operators (<,>,.i,c ,>,#). A compound predicate is linear when each of its

component simple predicates is linear.

In general, predicates can be expressed in terms of both program variables

and input variables. However, in generating input data to satisfy the path

condition we must work with constraints in terms of only input variables.

If we replace each program variable appearing in the predicate by its symbolic

value in terms of input variables, we get an equivalent constraint which we

call the fr~dicate interpretation. A particular interpretation is equivalent

to the original predicate in that input variable values satisfying the inter— Li
pretation will lead to the computation of program variables which also satisfy

the original predicate. A single predicate can have many different interpre—
r

- tat ions depending upon which path is selected, for each path will in general i
consist of a different sequence of assignment statements. The following

program segment provides example predicates and interpretations.

f l :
_ LI

• 
— — —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~ - 

_ . —
~~ _

. 
-.---- - —-- — - :

~
-- --—-_______

- ——--. .—. —.~~--.-



• -- • • • • • •• • • - -  — • .

L -

9

READ A,B;

I F A > B
THEN C — B + 1 ;
ELSE C — B — l ;

I ENDIF;
-
~~ D~~~2*A+B;

IF C c 0
THENE—O;
ELSE

DO I — l,B;
• E — E + 2 * I ;

[H ENDDO;
ENDIF ;
IFD— 2

THEN F— E + A ;L~ ELS E F — E — A ;
ENDIF ;

WRITE F;

In the first predicate, A > B, both A and B are input variables, so there

is only one interpretation. The second predicate, C < 0, will have two

interpretations depending on which branch was taken in the first IF construct.

For paths on which the THEN C — B + 1 clause is executed the interpretation is

L B + 1 < 0 or equivalently B < —1. When the ELSE C — B — 1 branch

Ii is taken, the interpretation is B — 1 < 0, or equivalently B < 1. Within

the second IF—THEN—ELSE clause, a nested DO—loop appears. The DO—loop is

executed:

no times i f B < l

Li once i f l < B < 2

twice i f 2 < B < 3

etc.

H - Thus the selection of a path will require a specification of the number of times

Li 
that the DO-loop i. executed, and a corresponding predicate is applied which

selects those input points which will follow that particular path. Even though

the third pred icate , D — 2 , appear s on four different paths , it only has one

interpretation , 2*A + B — 2, since D is assigned the value 2*A + B in the

same statemen t in each of the four paths.

—- ----~ ~ •~~~~~~~~~~~~~ •
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• 2.3 Importance of Linear Predicates

The domain testing strategy becomes particularly attractive from a

practical point of view if the predicates are assumed to be linear in input

variables. It might seem to be an undue limitation to require that predicate

interpretations be linear for the proposed strategy. In fact, however , as the

following discussion shows, this represents no real limitation for many

important applications.

A number of authors have provided data to show that simple progranming

language constructs are used more often than complex constructs. Knuth (10]

studied a random sample of FORTRAN programs and found that 862 of all assign—

went statements were of the forms

v1 — V 2,

Vl — V 2 + V 3,

or V1 V2 — V 3.

Also 70% of all DO loops in the programs contained less than four statements.

Elshoff (5,6] studied 120 production PL/I programs and showed similar results,

including the fact that 97% of all aritheetic operators are + or — , and 98%

of all expressions contain fewer than two operators.

I , An experiment of particular relevance to the present context is reported

in Cohen [4] using typical data processing programs, since program functions

and programeing practice tend to be reasonably uniform in this area • A random [1
sample of 50 COBOL programs was taken directly from production data processing

I~~~~~ 

applications for this study In this static analysis each predicate is I
classified according to whether it is linear or nonlinear, and the number of

input variables used in the predicate has also been recorded. In addition, the

- 
• number of input—independent predicates were tabulated, since these predicates

_____ 
do not produce any input constraints. The number of equality predicates is -•

also reported since these predicates are very beneficial in reducing the number

r ____________________

-

of test points required for a domain. These data are su arised in Table I.

— 
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TOTAL AVG. RANGE

Total Lines 12,628 253 31—1,287

Procedure Division Lines 8,139 163 13—822

U Total Predicates 1,225 25 0—115

Linear Predicates 1,070 21 0—104

U Nonlinear Predicates 1 0.02 0—1

Input—Independent Predicates 154 3 0—28

Predicates with I Variable 945 19 0—97

Predicates with 2 Variables 125 2.5 0—20

U 
Equality Predicates 779 15.5 0—76

[1

1 TABLE I Predicate Statistics for 50 COBOL Programs

(•~1
~~~

n
~~~~~~~ ~j

•~~ ~~~~~~~ II
Li
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12 L
The moat important result is that only one predicate out of the 1225

tabulated in the study can possibly be a nonlinear predicate. The predicates
I-i

are also very simple since most of them refer to only one input variable, and

no predicate in this sample uses more than two input variables.

In conclusion, while this study by no means represents an exhaustive

survey, we believe the sample is large enough to indicate that nonlinear

predicate interpretations are rarely encountered in data processing applications.

It is ejear that any testing strategy restricted to linear predicates is still I.

vjab],e in many areas of prograsuning practice.

24 Input Space Stru~eure

A program which has N input variables and produces N output variables

computes a function which maps points in the N—dimensional input space to

points in the H—dimensional output space. The input space is partitioned into

a set of domains. Each domain corresponds to a particular executable path in

the program and consists of the input data points which cause the path to be

executed . More formally, an j~put space domain is defined as a set of input

data points satisfying a path condition, consisting of a conjunction of predi-

cates along the path. In this discussion, these predicates are assumed to be

simple; compound predicates will be discussed later , in Section 5.3.

We assume that the input space is bounded in each direction by the

ainiwam mod maximum values for the corresponding variable. These win—max

• - , 
constraints do not appear in the program but are automatically appended to 

•

~

each path condition. Since a single data type is used for all variables in

our language, each variable will have the same win—max constraints.

The boundary of each domain is determined by the predicate. in the path

condition and consists of border ~~~~~~~~~~~~ where each segment is the section of

the boundary determined by a single simple predicate in the path condition.

Each border segment can be open or closed depending on the relationa l operator

— • • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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in the predicate. A closed border segment is actually part of the domain and

is formed by predicates with c, > , or • operators . An 22~~ border segment forms

part of the domain boundary but does not constitute part of the domain, and

- is formed by < , > , and # predicates. We shall find it convenient to use the
• 

term border operator to refer to the relational operator f or the corresponding

predicate.

- 
Since border segments in the input space are determined by the particular

I I predicate interpretations on the path, the form of the segment may be different

from that of the original predicate. For example, with input variables A and B,

the linear predicate A -C C + 2 can lead to a nonlinear border segment, A -C B*B + 2,

when C — B*B. Similarly, a nonlinear predicate, C > A*A + B, will produce

a linear border segment, A ) B, when C — A*A + A. Since a predicate can appear

- 
on many paths and each path can execute a different sequence of assigoment

statements for the variables used in the predicate, a single predicate can have

many different interpretations and can form many discontinuous border segments

U for various domains.

The total number of predicates on the path is only an upper bound on

• the number of border segments in the domain boundary since certain predicates

in the path condition may not actually produce border segments. An input—
• 

•
~ independent p~redicat e inter pretation is one which reduces to a relation between

I constants, and since it is either true or false regardless of the input values,

it does not further constrain the domain . A redundant predicate interpretation

[f is one which is superceded by the other predicate interpretatio ns , i.e., the

- domain can be defined by a strict subset of the predicate inte rpretations for

• . LI that path .

[ The general form of a simple linear pr edicate interpre ta t ion is
1~ £1 Z1+ A  12 + . . . . + A  X ROP I

~~~~~~~~~~ IJ~T~JI~
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14 H
where ROP is the relational operator, are input variables, and

~~ K are constants. However, the border segment which any of I
these predicates defines is a section of the surface def ined by the equality

A1 X1 + A 2 X2 + . . . . + A X ~~~~K~

since this is the limiting condition for the points satisfying the predicate.

In an N—dimensional space this linear equality defines a hyperplane which is I i

the N—dimensional generalization of a plane. L
Consider a path condition composed of a conjunction of simple predicates.

These predicates can be of three basic types: equalities C—) , inequalities (c ,

, .c, >), and nonequalities (#). The use of each of the three typEs results in a

markedly different effect on the domain boundary. Each equality constrains the domain L
to lie in a particular hyperplane, thus reducing the dimensionality of the

domain by one. The set of inequality constraints then defines a region within L -

the lower dimensional apace defined by the equality predicates.

The nonequality linear constraints define hyperplanes which are not part

of the domain, giving rise to open border segments as mentioned earlier. Observe

that the constraint A # B is equivalen t to the compound predicate (A <B) OR

(A > B). In this form it is clear that the addition of a nonequality predicate

to a set of inequalities can split the domain defined by those inequalities into

two regions.

The following a..~p1e should clarify the concepts discussed above, Li
READ I,.I ; -

C .I+2*J_ l; []
(P1) IFC>~~

TR EN D— C — I ;  Fl
E L S E D— C + I- J + 2 ;  Ii

~~~IF;

(P2) I F D— C + 2  
~~~ .

~~.f l E.3 ;
DIP;

(p 3) I F E D~~~2*J H

II

WRITE F; i~.I a

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- _____________________________ 

~~~‘. .  ~~~~~~~~~~~~~ — _
s 

—
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Figure 1 shows the corresponding input space partitioning structure for

I this program. The input space is in terms of inputs I and 3, and is arbitrarily

constrained by the following win—max conditions;

U — 3 < 1 < 4 , — 2< 3 < 6 .

Each border in Figure 1 is labelled with the corresponding predicate, and each

domain is labelled with the corresponding path. The path notation is based

j upon which branch (T or E) is taken in each of the three IF constructs, e.g., TEE.

The first predicate P1, C > 6, will be interpreted as I + 2*3 > 7 since

L C — I + 2*3 — 1. This single interpretation P1 is seen in Figure 1 as a single

continuous border segment across the entire input space. The second predicate

P2 demonstrates the effects of both equality and nonequality predicates. Domains

I 
- 

for paths through the THEN branch are constrained by the equality, and this

reduction in dimensionality is seen in the fact that these domains consist of

1. the points on the solid line segments ETT and flT. Paths through the ELSE

U 
branch are constrained by a nonequality predicate, and the corresponding domains

consist of the two regions on either side of the solid line segments (e.g., EEE).

This predicate has two interpretations depending upon the value assigned to D

and produces two discontinuous border segments ETT and ~~T.

I !  The third predicate P3 might have four different interpretations, but

- only one border segment appears in the diagram. The other three interpretations

do not produce borders since they are either redundant , input-independent , or

correspond to infeasible paths. With three IF constructs we have eight control

paths, but the diagram contains only f ive domains since three of the paths are

infeasible. Also many of these domain, have fewer than three border segments

because of redundant and input-independent interpretations. From this example we

can conclude that the input space partitioning structure of a program with many

predicates and a larger dia.II.ional input space can be extramely complicated.

‘ 
—  
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6 
P2~~ 

I I 1

TEE ,-TTT 
-~~~~~~~~~~~~

~~~~~~~~~~~~~~~~ TEE -

3 —  -

EET

J 2 -  EEE -

ETT

0 —  -

P2 P3

I EEE EET -

-2 -I 0 I 2 3 4

I

Li
FIGURE 1. Input Space Partition ing Structure
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The foregoing definitions and the example allow us to characterize more

precisely domains whIch correspond to simple linear predicate interpretation..

L For a formal statement of the characterization, we need the following definitions.

A set is convex, if for any two points in the set, the line segment joining

these points is also in the set. A convex polyhedron is the set produced by the

intersection of the set of points satisfying a finite number of linear equalities and

inequalities.

Proposition 1

For an execution path with a set of simple linear equality or inequality

- 
predicate interpretations, the input space dos~ain is a single convex polyhedron.

- If one or more simple linear nonequality predicate interpretationsare added to

this set, then the input space domain consists of the union of a set of disjoint

- convex polyhedra.

Li

L~~-j

I
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CHAPTER 3 i -

ERROR CLASSIFICATION AND THEORETICAL LIMITATIONS - -

3.] Definitiona of Types oe Error -

The basic ideas behind the classification of errors that we use are due to -

Howden (9] , but our approach to defining them is somewhat more operational

than that given in his paper.

From the previous sections, it is clear that a program can be viewed as

1) establishing an exhaustive partition of the input space 
S

into mutually exclusive domains each of which corresponds

to an executable path, and

2) specifying, for each domain, a set of assignment statements

which constitute the domain computation.

Thus we have a canonical representation of a program, which is a (possibly -

infinite) set of pairs {(D1;f1),(D2;f2), ... (D
~

;f 1),. .1,  where D1 is the i—tb

domain, and f1 is the corresponding domain computation function.

Given an incorrect program P, let us consider the changes in its I .

canonical representation as a result of modifications performed on P. It is

assumed that these modifications are made using only permissible language 
-

constructs and results in a legal program. I
Definition: A domain boundary modification occurs if the modification

results in a change in the Di component of noise (Di;f i) pair in the 
canonical

representation.

Definition: A domain computation modification occurs if the modification

results in a change in the f~ component of some (D~;f1) pair in the canonical

representation.

1~~~~~- I

Ej 
-

~~

—5--——- - - -- -.—-— 5-.- -
-— - . 

_
5• 
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Definition A missing path modification occurs if the modification results in

1. the creation of a new (D1;f~) pair such that D~ is a subset of D~ occurring in some

pair (D~;f
3
) in the canonical representation of P, and f~ differs from f1.

L Notice that a particular modification (say a change of some assignment

IT statement) can be a modification of more than one type. In particular , a

missing path modification is also a domain boundary modification.

I The errors that occur in a program can be classified on the basis of the

modifications needed to obtain a correct program and consequent changes in the

canonical representation. In general, there will be many correct programs, and

multiple ways to get a particular correct program. Hence, the error classif I—

cation is not unique, but relative to the particular correct program that

(j would result from the series of modifications.

Definition: An Ln orrect program P can be viewed as having a domain error
I *1 (computational error) (missing path error) if a correct program P can be

created by a sequence of modifications at least one of which is a domain

1 boundary modification (domain computation modification) (missing path

modification).

Several remarks are in order. The operational consequence of the phrase

“can be viewed as” in the above definition is that the error classification

Lj is relative not only to a particular correct program, but also to a particular

sequence of modifications. For instance, consider an error in a predicate

U interpretation such that an incorrect relational operator is employed, e.g., use

of > instead of <. This could be viewed as a domain error, leading to a

modification of the predicate, or as a computation error, leading to a modification

fl of the functions computed on the two branches. The fact that it might be
- 

- 
- , more profitable to change the relational operator rat her than the function

U 
computat ions is a consequ ence of the language constructs, and is not directly

___________ ~~~ — -~~~~--
—---

~~~~.- - -- 
~~~~~~~~~~~~~~~~~ ~~~~
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[ 1

captured in the definitions of the types of error. In this paper we would

regard an error due to an incorrect relational operator as a domain error;

it is a simpler modification to change the relational operator in the predicate

than to interchange the set of assignment statements.

More specific characterizations of these errors can be made in the context

of the specific programeing language which we have introduced. In particular, {
the following informal description directly relates the domain and missing 

S 
-

path errors to the predicate constructs allowed in the language. L
A path contains a domain error if an error in some predicate interpre—

tation causes a border segment to be “shifted” from its correct position or

to have en incorrect border operator . A domain error can be caused by an

incorrectly specified predicate or by an incorrect assignment statement which

affects a variable used in the predicate. An incorrect predicate or

assignment statement may affect many predicate interpretations and conse-

quently cause more than one border to be in error.

A path contains a missing path error when a predicate is missing which

would subdivide the domain and create a new execution path for one of the

subdomains. This type of error occurs when some special condition requiring

different processing is omitted .

3.2 Fundamental Limitations

Finite testing strategies are fundamentally limited by their inability

to detect phenomena occuring in regions which have zero volume or measure

relaUve to the input space or domain. The first of these limitations we shall

define as coincident~~ correctness. In testing each domain for the

correctness of its boundaries, if the output for a test case is correct, it

. . 
.—..

‘ 

— 
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- 
could be either that the test point was in the correct domain, or that it was

1. in a wrong domain but the computation in that domain coincidentally yielded

a correct value for the test point. Similarly, a domain computation could

1. correspond to an incorrect function, but its output may coincide with the
- 

correct value for a particular test point. To be absolutely certain that the values

are not coincidentally correct, it would be necessary to exhaustively test all

the points of the domain.

- 
The essence of the coincidental correctness problem is the same as

that of the problem of deciding if two arbitrary computations are

[ equivalent; the latter problem is known to be generally undecidable . However ,

in practice, the severity of the problem is related to the probability tha t

for an arbitrary point this coincidence would occur. If the set of points

Li for which the two functions have the same value is of measure zero, then this

probability is zero, even though coincidental correctness is still possible.

[j So, even with coincidental correctness as a possibility, a testing strategy

can be almost reliable in the sense of Howden [9] , if it would be reliable

in the absence of coincidental correctness , and the set of points which are

coincidentally correct has zero volume relative to the domain being tested.

- Another basic limitation relates to missing path errors. When the

subdomain dissociated with a missing path is a region of lower dimensionality

than the original domain, a missi~~ path error of reduced dimensionality

[I occurs. This typically happens when the missing predicate is an equality. If

all that is available is just the (incorrect) program to be tested, then the

probability that a finite set of test points would detect the missing predicate

is zero, since the volume of th~ subdomain is zero relative to that of the

original domain

~~~~~~~~~~~~ ~~~~~~~~~~ _~— ____5•_ ___ --5------ —- - ~~~~~~~~~~~~~~~~~~ _ 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~-‘-~ -~~~~5•~~~
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The proposed approach is capable of detecting many kind s of missing path

errors, but for some of them the number of required test points is inordinate .

Hence, in the next section, where we describe the testing strategy, we will Isimply assume that no missing path errors are associated with the path being

tested .

I-
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I
THE DOMAIN TESTING STRATEGY

II The domain testing strategy is designed to detect domain errors and will

be effective in detecting errors in any type of domain border under certain

là conditions. Test points are generated for each border segment which, if

processed correctly, determine that both the relational operator and the

1. position of the border are correct. An error in the border operator

occurs when an incorrect relational operator is used in the corresponding

predicate, and an error in the position of the border occurs when one or more
7 .

incorrect coefficients are computed for the particular predicate interpretation.

The strategy is based on a geometrical analysis of the domain boundary and

1. takes advantage of the fact that points on or near the border are most

sensitive to domain errors. A number of authors have made this observation,

e.g., 3oyer et al. El] and Clarke 12].

L As stated in Proposition 1, a domain defined by simple linear predicates

- is a convex polyhedron , and each point can be classified according to its

- position within the domain. An interior point is defined as one which is
. surrounded by an c—neighborhood containing only points in the domain.

Similarly, a boundary point is one for which every c-neighborhood contains

both points in the domain and points lying outside of the domain. Finally,

U 
an extreme point is a boundary point which does not lie between any two

distinct points in the domain.

I] In the previous section , a comparison was made between the given program and a
- - 

corresponding correct program; indeed domain errors were defined in terms

of this correspondence. ft should be emphasized that the domain strategy

~ U does not require that the correct pro gram be given for the selection of test

5 •
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points, since only information obtained from the given program is needed.

However, it will be convenient to be able to refer to a “correct border”,

although it will not be necessary to have any knowledge about this border .

Define the given border as that corresponding to the predicate interpretation

for the given program being tested , and the correct border as that border -

which uould be calculated in some correct program.

The domain testing strategy is first developed , explained , and validated I_~

in detail under * set of simplifying assumptions:

1) Coincidental correctness does not occur for any test case. If 
-

correct output -results are produced, we can assume that the test -

point is in the correct domain rather than being coincidentally I

correct in another domain . 
S

2) A missing path error is not associated with the path being tested .

Missing path errors of reduced dimensionality pose a theoretical

itaitation to the reliability of any program testing methodology. 1
3) Each border is produced by a simple predicate. F
4) The path corresponding to each adjacent domain computes a different

function than the path being tested.

5) The given border is linear, and if it is incorrect, the correct

border is also linear.

6) The input space is continuous rather than discrete. El
7) Each border is produced by an inequality predicate.

8) The input space is two—dimensional, corresponding to a program which fl
reads at most two input variables. -~~

The first two assumptions were thoroughly explored in the previous section.
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Assumptions 3) through 8) are for convenience in the initial exposition, and
we shall investigate later the conditions under which each can be relaxed. Also,

references 13J and 141 di~cus~ both the domain strategy and these assumptions

- 
j  in greater detail.

4.1 The Two—Dimensional Lipear Case

Given assumptions 1) — 8), a set of test points is first defined for

detecting border shifts, and then we shall show that this set of points also

detects all possible relational operator errors. Since the present analysis

is limited to linear borders in a two-dimensional input space, each border is

a line segment. Therefore, the correct border can be determined if we know

- 
two points on that border.

I The test cases selected will be of two types, defined by their position

F with respect to the given border. An ON test point lies on the given border,

while an test point is a small distance c from, and lies on the open

I side of , the given border. Therefore, we observe that when testing a closed
- border, the ON test points are in the domain being tested, and each OFF test

point is in some adjacent domain. Conversely, when testing an open border,

each ON test point is in some adjacent domain, while the OFF test points are

in the domain being tested.

Figure 2 shows the selection of three test points A, B, and C for a

• closed inequality border segment. In this and subsequent figures the small

I arrows are used to indicate the domain which contains the border segment. The

U three points must be selected in an ON—OFF—ON sequence. Specifically , if

test point C is projected down on line AB, then the projected point must

lie strictly between A and B on this line segment. Also point C is selected

a distance c from the given border segment, and will be chosen so that it

satisfies all the inequalities defining domain D except for the inequality

fl being tested.

‘
~ Ii
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It must be shown that test points selected in this way will reliably

detect domain errors due to boundary shifts. If any of the eest points lead

Li to an incorrect output, then clearly there is an error. On the other hand,

if the outputs of all these points are correct, then either the given border
Li -

is correct or we have gained considerable information as to the location of a

correct herder. Figure 2 shows that the correct border must lie on or above

points A and B, and must lie below point C, for by assqaptions (1) and (4),

1. each of these test points must lie in its assumed domain. So if the given

1 border is bicor~rect’, the correct border can only belong to a class of line

segments which interoect both closed line segments AC and BC.

Figure 2 indicates a specific correct border from this class which
1.

- 
intersects line segments AC and BC at P and Q respectively. Define the

1. domain error magnitude for this correct border to be the maximum of the distances

from P and from Q to the given border. Then it is clear that the chosen

- test points have detected domain errors due to border shifts except for a

class of domain errors of magnitude less than c. In a continuous space c

can be chosen arbitrarily small, and as c approaches zero , the line segments

— Ii AC and BC become arbitrarily close to the given border, and in the limit , we

• can conclude that the given border is identical to the correct border. Kowever,

the continuity of the space also implies that regardless of how small c is

chosen , border shifts of magnitude less than £ may not be detected , and there-

fore we must correspondingly qualify our results.

I] Figure 3 shows the three general types of border shifts, and will

allow us to see how the ON—OFF-ON sequence of test points works in each

case In Figure 3(a), the border shift has effectively reduced domain D

Test points A and B yield correct outputs , for they remain in the correct

domain D1 despite the shifted bord er However , the border has shifted past

~~~
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test point C, causing it to be in domain D2 instead of domain D1. Since

the program will now follow the wrong path when executing input C,

incorrect results will be produced. In Figure 3(b), the domain D1 has

been enlarged due to the border shift. Here test point C will be processed

correctly since it is still in domain D2, but both A and B will detect the

shift since they should also be in domain D2. Finally in Figure 3(c),

only test point B will be incorrect since the border shift causes it to be

in D1 instead of D2. Therefore, the ON—OFF—ON sequence is effective since

at least one of the three points must be in the wrong domain as long as the

border shift is of a magnitude greater then c.

- 
Recall in Figure 2 that we required the OFF point C to satisfy all

the inequalities defining domain D except for the inequality being tested.

~ 
j The reason for this requirement is that some correct border segment may

- .  

terminate on the extension of an adjacent border, rather than intersecting

I both line segements AC and BC as we have argued . Since we have assumed a

continuous space , C could always be chosen closer to the given border in

-~ order to satisfy the adjacent border inequalities. An analysi~s of this situ a—

[I tion will be pres ented in Section 6.2.

We must also demonstrate the reliability of the method for domain errors

Li in which the predicate operator is incorrect. If the direction of the

inequality is wrong, e.g., < is used instead of >, the domains on either side

of the border are interchanged, and any point in either domain will detect

1] the error. A more subtle error occur s when just the border itself is in

the wrong domain, e.g., <‘ is used instead of c. In this case the only points
affected lie on the border , and since we always test ON points , this type of

error will always be detected. If the correct predicate is an equa lity, the

OFF point will detect the error .
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The domain testing strategy requires at most 3*P test points for a

domain , where P , the number of border segments on this boundary , is bounded

by the number of predicates encountered on the path. However, we can

reduce this cost by sharing test points between adjacent borders of the

domain. The requirement for sharing an ON point is that it is an extreme

point for two adjacent borders which are both closed or both open. In the

exasple in Figure 4, the points that can be shared are A1, A2, and A3. The - i -

number of ON points needed to test the entire domain boundary can be reduced

by as much as one half, i.e., the number of test points,TP, required to

test the complete domain boundary lies in the following range: I
2*P<TP<3*P . -

Even more significant savings are possible by sharing the test points L
for a cosmon border between two adjacent domains. If both domains are

tested independently, the cosmon border between them is tested twice, using

a total of six test points. If this border has shifted, both domains must 
-

be affected, and the error will be detected by testing either domain.

Therefore, the second set of test points can safely be omitted. However,

the cost savings in such sharing should be balanced against the additional

processing required.

We now formally sumsarize the results of this section in the following L
proposition. -

Proposition 2 
- -

Given assumptions (1) through (8), with the OFF test point chosen a Li

distance e from the corresponding border, the domain testing strategy is

guaranteed to detect all domain errors of magnitude greater than c • More— 
- 

- 
-

over , the cost is no more than 3*p test points per domain, where P is the I
number of predi cates along the correspondi ng path.
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42 N—Dimensional Linear Inequalities

The domain testing strategy developed for the two—dimensional case can

be extended to the general N—dimensional case in a straightforward manner.

The central property used in the previous analysis was the fact that a

line is uniquely determined by two points. We can easily generalize this

property since an N—dimensional hyperplane is determined by N linearly - ‘

independent points. So, whereas in the two—dimensional case we had to

identify only two points on the correct border , in general we have to identify

N points on the correct border , and in addition , these points must be guaranteed

to be linearly independent.

The validation of domain testing for the general linear case is based on

the same geometric arguments used in the two—d imensional case. The key to the

methodology is that the correct border must intersect every OFF—ON line segment,

assuming that the test points are all correct. Since we must identify a total

of N points on the correct border, we need N OFF-ON line segments, and we can

achieve this by testing N linearly independent ON test points on the given [
border and a single OFF test point whose projection on the given border is a

convex combination of these N points. In addition, as in the two-dimensional S

case, the OFF point must also satisfy the inequality constraints corresponding

to all adjacent borders.

Even though we do not know these specific points at which the correct border Li
intersects the ON-OFF segments, we do know that these points must be linearly

independent since the ON points are linearly independent . The OFF point is

-
~~~~~~ a distance e from the given border , and in the limit as e approaches zero, fl

each 0FF—GE line segment becomes arbitrarily close to th. given border

4 However, ti in the two-di snsional case , the £—limitation means that only

border shifts of magnitude greater than c will be detected.
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I The domain testing strategy requires at most (N+l)*P test points per

domain, where N is the dimensionality of the input space in which the domain

is defined and P is the number of border segments in the boundary of the

specific domain. However, we again can reduce this testing cost by using

extreme points as ON test points. Each extreme point is formed by the

intersection of at least N border segments, and therefore one point can be

used to test up to N borders. In addition, extreme points are also linearly

independent. Each border must be tested by N ON points, and any points

beyond this are redundant , and so not all extreme points on each border are

I .  required. As a result of this kind of sharing, the number of test points can

• - be as few as 2*P. As in the two—dimensional case, there can be further

1- . savings if test points are shared between adjacent domains. Finally, since

: some of the P border segments may be produced by the mm —max constraints which

define the bounds of the input space, the number of test points can be

[ reduced still further , if we can assume that these constraints are prede—

termined and need not be tested.

1 This generalization to N dimensions is significant since very few

nontrivial programs have only two input variables. We suimnarize the results

so far in the following proposition:

Proposition 3

Given assumptions (1) — (7), with the OFF test point chosen a distance c

f rom the corresponding border, the domain testing strategy is guaranteed to

I detect all domain errors of magnitude greater than s regardless of the dimen—

sionality of the input space. Moreover , the cost is not more than (N+1)*P

test points per domain.
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4.3 Equality and Nonequality Predicates

Equality predicates constrain the domain to lie in a lower dimensional

space. If we have an N-dimensional input space and the domain is constrained

by L independent equalities, the remaining inequality and nonequality

predicates then define the domain within the (N—L)—dimensional subspace

defined by the set of equality predicates.

In Figure 5 we see the equality border and the proposed set of test points.

In a general N—dimensional domain, let us first consider a total of N ON

points on the border and two OFF points, one on either side of the border.

As before , the ON points must be independent, and the projection of each OFF

point on the border must be a convex combination of the ON points.

Given an incorrect equality predicate, the error could be either in the

relational operator or in the position of the border or both. The proposed

set of test points can be shown to detect an operator error or a position

error by arguments analogous to those previously given. This set of points

is also adequate for almost all combinations of operator and position errors,

except for the following pathological possibility. Let us assume that the

border has shifted and the correct predicate is a nonequality. If both OFF

points happen to lie on the correct border while none of the ON points

belong to this border, the error would go undetected. This singular

situation is diagranued as the dashed border in Figure 6, where A1 and A2 are

the ON points, and C1 and C2 are the OFF points. This problem can be solved

by testing one additional point selected so that it lies both on the given

border and the correct border for this case, i.e., at the intersection point

of the given border with the line segment connecting the two OFF points.

This additional point is denoted by B in the figure. 5

Each equality predicate can thus be completely tested using a total of S

(N+3) test points. By sharing test point s between all the equality predicates,

ri
t
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this number can be considerably reduced, but the reduction depend s upon

values of N and L. In addition, since testing the equality predicates [
reduces the effective dimensionality to (N—L) for each of the inequality and

nonequality borders, and the equality ON test points can be shared, even
S 

further reductions are possible.

For the case of a nonequality border, the testing strategy is identical

to that of the equality border just discussed. The arguments for the

validity of the strategy are analogous to those in previous cases. Again in this

case, the pathological possibility discussed in connection with the

equality predicatecan occur, and can be handled in the same way. The major

difference is that while test points can be extensively shared between

equality and inequality borders, in general such sharing is not possible

between nonequality and inequality borders. The following proposition

suunarizes the situation for testing linear borders in N—dimensions.

Proposition 4

Given assumptions (1) through (6), with each OFF point chosen a distance

c from the corresponding border, the domain testing strategy is guaranteed to 1 - -

detect all domain errors of magnitude greater than c using no more than

P*(N+3) test points per domain.

4.4 An Example of Error Detection Using the Domain Strategy

The domain testing strategy has been described and validated using some— S

what complicated algebraic and geometric arguments. In this section we hope to

compliment those discussions by dimonstrating how a set of domain test points

for a short sample program actually detects specific examples of different

types of progr~~~ing errors. In discussing each error we will focus on a

specific domain affected by the error , and a careful analysis of its effect on

the domain will allow us to identify those domain test points which detect the

error .
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The short example program reads two values , I and 3, and produces a single

output value M. Therefore, the input space is two-dimensional, and the following

I mm —max constraints have been chosen so that the input space diagram would

not be too large or complicated.

—8 < 1 < 8  —5 ~~J< 5 .

In addition, since this is a two—dimensional space, we will also test extreme

points for the border segments produced by the m m - m a x  constraints in order to

I . be able to detect as many missing path errors a~ possible .

Even though the input space is assumed to be continuous, the coordinates

- - of each test point are specified to an accuracy of 0.2 in order to simplify the

I diagrams and discussions. Of course, in an actual implementation each OFF

point would be chosen much closer to the border.

I The sample program is listed below, and it consists of three simple

IF constructs, the first two of which are inequalities and the last of which

is an equality. The input space structure is diagrameed in Figure 7, where the

solid diagonal border across the entire space is produced by the first predicate,

• the dashed horizontal border and short vertical border at 1—0 are produced by the

I ~- second predicate, and the vertical equality border at I5 corresponds to ‘zhe

third predicate. In addition, domain test points have seen indicated for the

two domains which we will discuss, viz., TTE and ETT.

1 Statement
i~1 Number

H RE AD 1,3;

1 IF I< J + l
2 T H E N K - I + J — l ;
3 E L S E K . 2 * 1+ l ;

END!!;
- 

S -

4 I F K ’ I + l
5 TNE NL—I +l;
6 E L S E L — J — l ;

Ii ENDIF;
Li 

I F I — s
i-i 8 THEN M~~~2*L ,~~ ;

Ij 9 ELSE M ~~~L+ 2*K_ l;
ENDIF;

U WRITE P1;
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Table II illustrates two types of errors we would like to consider.

L The first is an error in the inequality predicate in statement #4 of the

above program, (K > 1+1), where it is assumed that the correct predicate should

I. be (K > 1+2). This corresponds to an inequality border shift, and the modified

domain structure is shown in Figure 8. Three points have been selected to
15 5k

test this border, and it can be seen in Table II that the two ON points detect

- 
this error, where 14 and 14~ represent the output variables for the given program

and for the assumed correct program respectively. Note that as a result of

- this error, the vertical border at 1—0 in Figure 7 has also shifted to I—i in

Figure 8, and if tested, would also reveal this error.
- 

Table II also shows the effect of an error in an equality predicate in

statement #7 of the given program. It is assumed that the correct predicate

should be (I 5—J) rather than the (1.5) predicate which occurs in the given

E~. program. Figure 9 show, the modified input space structure, and it can be seen

• 
I 

- that equality borders TTT and ETI ’ have shifted . Table II shows the five points
- which test the ETT border, and note that two ON points both detect this shift.

1~ 
Table III indicates that the domain strategy can also detect a compu-

tation error and a missing path error, even though we have previously noted

I that reliability cannot be proven for these cases. The computation error

• arises from statement #6 in the given program, where it is assumed that the

correct assignment statement for this ELSE clause is (L.~I—2) instead of (LaJ—l)

[1 which actually appears in the given program. Since L is not used in any sub-

S sequent predicate, this corresp onds to a computation error rather than a domain

I error. Thus the input space structure in Figure 7 is applicable for both

the given and the correct programs. Table III shows the six test points which
~~ ~~;-

have been chosen to test domain TEE wlmii..h is affected by this computation error

U Pour of the points should indicate the error, but note the test results at

(—4 , —5) are coincidentally correct; the remaining th ree points detect the error.
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Suppose in pro$r~~ statement #2 the THEN clause is replaced by the S

following code.

THEN IF 2*J _5*I _ 40
TBEN K 3; -~~

ELSE X5~~ I + J - 1;
ENDIF;

This corresponds to a missing path error and is indicated as such in Table III.

Figure 10 show, how the domain TEE i. modified by this missing path error , but

note that only test point (-8 ,—3) detects this error. If the < inequality in

the missing predicate had been an equality, this would have produced a missing - -

path error of reduced dlaensionality, corresponding to a domain consisting of

j ust the line segment in Figure 10, and would have gone undetected. S
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CHAPTER 5 -

EXTENSIONS OF THE DOMPdN TESTING STRATEGY

Many assumptions were required in presenting the previous results, but 
-

to some extent these assumptions wer e made to allow a simple exposition of the t
domain testing strategy. This section will discuss assumptions (3), (4), and (5)

which deal with compound predicates , adjacent domains which compute the same

function, and nonlinear borders , respectively . The treatment of these cases will

certainly requir. additional test points, and in some instances will demand extra

processing which may render this testing approach impractical. However , one of I
the main objectives of this section is to illustrate that none of the assumptions

(3), (4), or (5) pose a theoretical limitation to the domain testing strategy which

cannot be dealt with in some fashion.

5.1 The General Nonlinear Case 
-

A finite domain testing strategy cannot be eff ective for the universal class

of nonlinear borders , but we must determine whether this is caused by some funds—

mental difference between linear and nonlinear functions. If the problem is that

we are considering too general a class of borders , then we should be able to extend 
S

the methodology to cover well-defined subclasses of nonlinear functions • However,

if th. problem is caused by some basic characteristic of nonlinear borders, we

will not be able to extend domain testing to any class of nonlinear functions.

For linear borders, we have assumed that if the given border is linear, and

if there is a domain error , then the correct border is also linear. In order to S

extend our testing results to particular subclasses of nonlinear functions, such
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as quadratic or cubic polynomials, we Sust assume that if the given nonlinear

L border is in error , then the correct border is in the same nonlinear class. This

nonlinear class will be specified by K parameters ; for example, consider the general

form of a two—dimensional quadratic in terms of variables X and Y, where A, B, C,...

- -  are coefficients, and K — 6:

Then (K—i) points can be chosen in order to solve for these K coefficients. For
- 

the .a~Il. above the five points [X~ ‘t
~

3
~ 

— i,..~ ,5, should satisfy the following

I: syste. of equations:

~: ~‘: ~~I X~ Ti X~Y~ X~ Y~ 1 D - 9
- : : : : E :

.2 2 • . • F 0

H —
~~~~~~ — - - — .

- 
Define an independent set of (K—i) points [Xi, Y~] as a set which can be used to

- solve for the coefficients, and thus determine a specific member of the nonlinear

class .

We can now formulate the general nonlinear domain testing strategy in terms

of these observations. (K—i) ON-OFF pairs of points are chosen such that the

I (K-i) ON points are independent and each OFF point is chosen a distance c from the

S fl corresponding ON point. This requires 2*(K_l) test points per nonlinear border.
LI The (K—i) ON-OFF line segments formed by this set of pairs have been chosen so tha t

S the only correct borders which yield correct test results must inter sect each of

these ON-OFF line segments. For any particular correct border , there are (K—i)

[1 independent intersection points, which determines the border completely . Note that

the intersection points are independent if £ is chosen sufficiently email, since

_
- S
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the ON points are independent for the given border. A further requirement, as in

the linear case, is that all OFF points satisfy all inequality borders other than

the one being tested .

While a single OFF point was sufficient in the linear case, the independence

criterion requires (K—i) OFF points for each nonlinear border. In the former case

linearity allowed the OFF point to be shared by all the ON points, since the linear

independence of the points identified as lying on the true border is guaranteed

by the linear independence of the ON points themselves. If we were to test a non—

linear border with (K—i) ON point s and a single OFF point, we would be able to

conclude that the correct and given borders intersect at (K—i) points. However,

we cannot conclude that these (K—i) points are independent. We know of no

selection criterion for the ON points which would guarantee the independence

of the intersection points using only one OFF point. So an effective strategy

requires the full set of 2*K test points, and unfortunately K grows very rapidly

as the dimensionality and degree of nonlinearity of the border increases.

A two—dimensional nonlinear border is a very special case, and even though
L 4

the general strateg y is effective , a slightly different testing strategy can be

formulated to reduc e the number of required test points. The basic difference is

that the intersection between two—dimensional nonlinear borders from the same

class is a finite set of points, the maximum number of which can be determined

from the form of the function. For example a pair of two—dimensional quadratic

curves can intersect in at most four points. This means that any set of more than

four points cannot possibly lie on two distinct quadratics, and any five points

uniquely determines a specific quadratic. Therefore, we do not have to worry

about independence in the two—dimensional case, since any set of (K—i) distinct

points will produce a system of independent linear equations. For example,

S 
any three distinct points can lie on at moat one circle , since two circles 

-

cannot have more than two points in e~~~on. H
11
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1. We test a two—dimensional nonlinear border with K points, e,g, six for

S 
a quadratic selected in an ON-OFF-ON-OFF.... sequence along the border as diagrameed

S - for the closed border in Figure U. Since the correct border must pass on or

above the given border at each ON point, and must pass below each OFF point, the two

S borders must intersect an odd number of times, let us assume once, in each ON—OFF and

H OFF-ON interval along the border. The K test points define (K—i) intervals on

the border, each of which must contain at least one intersection point. We have

shown that these (K—i) points must be independent , and since they cannot lie

on two distinct borders, the given border must be correct within £ . As a

technical detail, it is also possible that the correct border may be tangent to

I the given border at an ON point, but if this occurs, an argument involving the

derivatives of the two borders at that point can be invoked to justify the choice

of the test points for this two—dimensional case.

ij Although the domain strategy has been extended to nonlinear boundaries,

points must be generated in a domain defined by nonlinear boundaries , requirin g

the solution of nonlinear systems of equations. Since this probably requires

excessive processing for arbitrary nonlinear borders, it does not represent a

very practical approach.

5.2 Adjacent Domains Which Compute the Same Function

[1 
If two adjacent domains compute the same function, any test point selected

for their comon border is ineffective, since the same output values are

I computed for the test point regardless of the domain in which it lies. We

will demonstrate how domain testing can be modified to deal with this problem. S

S 
- In Figure i2(a) , assuming domain D1 were being tested , we must compare

{] the functions calculated in domains D1 and D2 for test point A, D1 and D4 for 
S

B, and D1 and D3 for C. One of the major problems to be solved is the 
S

[J identification of these adjacent domains. We assume that when testing domain

U
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the partitioning structure of the adjacent domains and the program path:

S associated with these domains is not known. It would be very complicated
S 

to have to generate the domains which are adjacent to the border being tested.

Figure 12(b) illustrates an approach to this problem. The border being

tested is shifted parallel by a small distance c, so that test points A and B

now belong to adjacent domains, 1)2 and D4~ respectively. The modified program

is then retested using test points A and B, which will as a by—product identify

the paths associated with these two adjacent domains. We can then compare

the output for each test point before and after the shift. If it is different,

then we can definitely conclude that the adjacent domain computes a different

function, and this test point can safely be used. If the output is the same

for that test point, then we can conclude that either assumption (1)

or (4) is violated. However, there is no way to decide this, and the only

practical approach is to use further test points. If we know that coincidental

correctness cannot occur, then we could conclude on the basis of a single point

that the adjacent domain computes the same function. S

If two adjacent domains such as D1 and D2 in Figure 12(a) are found to

compute the same function, then in order to carry out the domain testing strategy

on the given border, new test points may have to be selected. For example,

point A can no longer be used, and this requires ascertaining the border structure

between D1 and D2. Thus a considerably amount of processing is required which

is probably not practical.

In summary, a technique of testing each point twice will assure us tha t

assumption (4) is valid, and this redundancy might be viewed as a reasonable price

to pay to eliminate this restriction. However, if an Instance is found where the

assumption is not valid, a basic theoretical problem exists.
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5.3 Domain Testing for Compound Predicates

L Assumption (3) stated that a path contained only simple predicates , and

this implied that the set of input points could be characterized quite

simply as a single domain. We must consider what complications can occur

for compound predicates, and how the domain strategy can be generalized

to test paths containing these predicates.

The set of Inputs corresponding to a path is defined by the path

condition, consisting of the conjunction of the predicates encountered along

the path. If a compound predicate of the for. p (i) AND C U+l)J is encountered

- L 
on the path , the path condition is still a single conjunction of simple

U 
predicates, and the only differenc e is that two of the simple predicates

are produced as a single branch point oi~ ~~
- ~~~~ :k’ modifications of the

U domain testing strategy are required in this case .

However, compound predicates using the Boolean operator O~ are more

[1 complicated . Consider a path containing the following predicates:

H 
C1, C2, ..., [C~ OR C~~1

1. ... C
~

U The path condition in this case is the conjunction of these predica tes , and S

LI in standard disjunctive normal form :

(C1 AND C2 
AND ... AND C1 AND ... AND C I

H 
t

OR (C1 Al1D C2 AND ... AND Cj+j AND...~~~~
Ct I

The set of input data points following this path consiats of the saLon of two

domains, each defined by the conjunction of simple predicates, and in general

[1 any number of these domains are possible.

iS - - Assuming linear predicates , each of these domains is a convex polyhedron,

I but the domains may overlap in arbitrary ways. The major p~ob1em caused by

[j 
these compound predicates is that the domains correspond to the same path, and

the assumption that adjacen t domains do not compute the mae function is violated .

~ L We identify three cases of importance domains which do not overlap, domains

S which partially overlap , and domains which totally overlap.
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The first case is indicated in Figure l3(a), where domains D1 and D2 
L

are defined by the compound predicate (C1 OR C21, and domain D3 corresponds to

some other path. In this case our methodology can be applied to each domain

separately, since the two domains for this path are not adjacent. j
In Figure 13(b) , the domains partially overlap, where D1 U D2 is the

domain defined by C1, and U D3 is the domain defined by C2. In the example ~~~ S

we cannot test the domains separately, since they are adjacent and the same

function is computed in each. For example, any test point for C1, selected

along that part of the border between D1 and D3, is ineffective since the same

results are computed for it in both of these regions. So, in this case we

must insure that the adjacent domain assumption is satisfied by selecting

test points for C1 and C2 which lie in that part of the border adjacent to a

domain for some other path.

In order to deal effectively with this case, some extra analysis will have to

be made, first in order to identify this second case, and also to identify the

actual domain, which is no longer convex. The borders of this domain are shown

in bold face in FIgure 13(b). This is probably no longer a practical approach,

especially f or higher dimensions .

The third case is shown in Figure 13(c), where the domain D1 for predicate L
C1 is a subset of the other domain, D1 U D2, which is obtained for predicate C2.

This presents a serious problem since there are no test points for border B of

domain which can satisfy the adjacent domain assumption , and therefore B cannot

be tested effectively . The techn ique developed in the pr evious section should

• help to identify this case. However, even if this case could be identified , testing N
for border B is no longer a practical procedure .

S 

So, in s~~~ary, a co pound predicate of the form (Cl AND C2] is the same as

two simple predicates , and domain testing can be applied to a domain defined with

this type of compound predicate. In addition , if the compound predicate
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is of the form [C1 OR C~] and the domains are distinct, domain testing can be

applied to each domain separately. However, if the domains overlap, this

introduces the problem of adjacent domains which compute the same function.

Although we may not find effective test points for domains which overlap in

arbitrary ways, we can recognize this situation and identify it as a border

which cannot be tested effectively.

[I
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CHAPTER 6

ERROR ANALYSIS OF DOMAIN BORDERS AND DISCRETE SPACES

An error analysis of domain borders is needed to resolve the following

questions :

i) How small should e be chosen in selecting an OFF test point for linear

borders, and where are optimal locations for the test points?

ii) We required the OFF test point for a given border to satisfy all in-

equality borders except that being tested ; how do potential errors

in other borders of the domain affect this requirement?

iii) What are the difficulties in applying domain testing in a discrete

space or in a space in which numerical values can only be represented

with finite resolution, and can these difficulties be circumvented by

taking reasonable precautions with the method?

These and other error analysis problems are dealt with in detail in

reference (l~~. It is interesting to observe that the answers to questions

i), ii), and iii) all involve the same worst—case situation: when two adjacent

linear borders of the same domain are nearly parallel. Figure 14 indicates

the two cases which can arise from adjacent Linear borders which are

S nearly parallel . Figure 14(a) shows a given border segment EF in which the

S 

~ 

two adjacent border segments EP and FQ both make large external angles

near l80 , with the given border BY. This lead s to very smell

‘ [1 supplementary int ernal angles and 
~2’ 

and especially for 
~2’ this results

in a very sharp “corner ” of the domain. In Figure 14(b), the adj acent borders

{ I PB and FQ are again nearly parallel to the given border BY, but a different

t r-
~ 

case is created . In this case, external angles 9
~ 
and 

~2 
are very small ,

and the internal angles •i and •2 are both near 180 .
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We will briefly argue in this report that one of these two situations is

1 . the key to the analysis of questions i), ii) , and iii), and we refer the

reader to reference (121 for further details and proofs. Section 6.1 intro—

duces an error measure which will indicate the best location for each of the

[ 1  three test points. Section 6.2 will deal with the problem of how interacting

border changes may affect the location of the test points. Section 6.3 briefly

L introduces the problem of domain testing in discrete spaces, and gives a

sufficient condition to guarantee effective test points can always be chosen.

Since all the above arguments are given only for two dimensions, Section 6.4

will show that the same basic approach is effective for higher dimensions.

~.i. An Error Measure for Test Point Selection
S 

—

In Figure 14(a), consider the selection of three test points A , B, and C

for testing border segment EF. It is shown in reference [12) that the best

S positions for two of them, say A and B, are points B and F, so the remaining

problem La the location of teat point C. We have observed that if the given
1 border BY is in error, then test points A, B and C will fail to -detect errors

if the correct border is one which intersects line segments AC and BC. Thus

given C which is at a distance c f rom the given border and halfway between

A and B, an appropriate error criterion could be the “number” of erroneous

points which would be undetected, i.e., the area between the two borders, possibly

limited by either or- both of the extensions of the adjacent borders BY and PQ.
It can be shown that this area measure can be bounded by the expression

BY + U cot 0

where 0 is the larger of O
~ 
and 

~~II
H
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In order for this error measure -to be finite, it is necessary that both Oi

and 02 are not too close to 1800 for given c. I_f cot eI<< ~~ , then the error

measure is on the order of c IF. This gives some guidance as to the choice of

t for point C. 
S

6.2 Interacting Border Se~~enta

In presenting the domain strategy, we required the OFF test point to satisfy 
t -

all inequality borders except the border being tested. Usually this does not

impose much of a constraint on the choice of the OFF point, but Figure 14(b)

illustrates a situation in which a severe constraint exists. We can show that

BY
h- S

(cot 01 + cot ~ 2)

and since c < h for choosing the OFF test point, this again shows the effect if

either 0i or 02 or both are very small. 
-

The same situation applies for interacting adjacent borders, and is illus-

trated in Figure iS. ~s long as the OFF points C1 and C2 
for each of the adjac~nt

S bprders are chosen sufficiently close to those borders, and the external angles

Oi and 82 are not too small, than the adjacent Borders-have a minimal Lnf1ue1~ce

on the selection of the OFF point C for border CF. For example, point C

must lie inside triangle EPU determined by given borders EP and FQ. The correct

borders which pose the worst case in limiting the selection of point-C are

shown as dashed lines in Figure 15; these limiting correct borders are determined

by how close C1 and C2 have been chosen to their. respective test borders. As a S

result of these conditions, point C is constrained to lie within triangle Ely,

a more restrictive condition than presented by triangle EPU. It should be

clear that if either 01 or A2 is too small, or either- C1 or C2 is chosen too

far from 1t~i res~ective test border , the region from which C could be chosen

would become restrictively small. [1

— : 
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6.3 Djsc~ete Space Analysis 
S

The previous several sections have indicated that if adjacent borders are

nearly parallel, then test point C is required to lie very-close to the border

being tested. But in a discrete space this could cause a severe problem, for no

discrete point may exist that close to the border. Similar problems exist for the

ON test points A and B, for- it may not be possible to choose them at extreme

points of the border .

For the discrete space we shall consider a two dimensional lattice, with

uniform spacing ~ in both dimensions. This models the situation where the

same data representation, integer or fixed—point , is used for two input variables.

For simplicity, let us again assume that points A and B can be chosen as

points E and F. We shall present a sufficient condition for a given domain with—

in this discrete lattice which guarantees that an OFF point C can be chosen as

a lattic e point for each border so that the area criterion of Section 6.1 is finite.

The result is based upon the follo~4ng two observations. First, any circle of diameter

v’7 A always contains at least one lattice point. Second, from Figure 14(a),

note that if either external angles 01 or 02 are too near 180’, then the “width”

of the domain will tend to be very small in terms of the lattice resolution A.

More formally, define the diameter d of a convex polygonal domain to be

the shortest distance from any extreme point to any domain edge not adjacent

to that extreme point ; this corresp onds to our informal argument about domain

“width” . The sufficient condition can then be stated as:

r S

S SI

H

- .,~ 

1 1

—S ~~ 
-
~~ 

~~~~-‘5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~—.
-S 5-~~~~~ 5- 55 55. ~~~~~~~_ sS~~~~-~~~ 

5 5~~~~5 _ _ 5 , 5  _ S -



1 - 63
Proposition 5

I. Given a domain with diameter d in a lattice with resolution A , if

• d > (—
~

—-) A — (2.12) A,

S then a lattice OFF point can be chosen f or every border, and moreover all

S external angles 
~i 

and 02 are constrained by

Icot Oi + cot Oat < 
(3 A
(/ 1

It is clear that there are some domains in a discrete space which cannot

H be tested, but these are pathological cases where one of the domain dimensions

- is on the order of the lattice resolution. Moreover, the result indicates a

simple computation in terms of the domain diameter to determine when such

domains are presented for- testing. For domains which can be tested in a discrete

space, the important result from Proposition 5 is that a restriction has been

U obtained on angles Oi and 02 which precludes both angles which are close to 180°

I 
and angles which are too small.

6.4 Extensions of Error Analysis to Hi2her Dimanaions

The previous arguments have all been made for two dimensions, so it is important

Li that the essential ideas can be generalized to higher dimensions. We can observe

that if two border segments are adjacent , they are intersecting hyperplanes. Again ,

S problems may arise if these two hyperplanes H1 and are nearly parallel , and

- 
~~ 

this can be measured by taking the inner product of their unit normal vectors

n1 and n2, yielding the cosine of the angle n between them:

cos a —

~~
S

S

~~~~

U
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Consider Figure 16 which indicates the testing strategy for three dimensions.

is assumed to be the border to be tested by ON points A1, A2, A3 and C is

the OFF point. is an adjacent border nearly parallel to H1, and 
~1 

intersects

at line L. If it is suspected that C may not be chosen close enough to ~~

only those borders which make an angle a -of 100 or less with need to be in-

vestigated further. S

To determine a test point C, we need to select that correct border hyper—

plane which is the worst case relative to border 
~2’ 

and then determine whether

or not these two hyperplanes intersect. This computation is quite straight— 1 -

forward, and the following algorithm together with Figure 16 should indicate how

it can be accomplished:

(a) select the ON point Ai furthest from line L (this is A3 in Figure 16);

the worst case correct border hyperplane 143 is then determined by line

L and line segment A1C;

(b) drop a perpendicular line segment from Ai to line L; this makes an

angle ~ with line segment A~C’I where C’ is the projection of point

C down on the hyperplane H~ being tested; recall that C’ is known,

for point C is obtained by first finding C’;

(c) the angle $ between ft1 and 15 can be found by

£
tan$— _

AiC’ cos ~

(d) if $ c a , then hyperplanes 
~2 and 143 do not intersect; otherwise, £

should be chosen smaller 80 tha t this condition is satisfied . 
S

Again, in this analysis, the fact that adjacent borders H1 and ~2 
are nearly

parallel proves to be the key point in selecting test point C. Yet , the above

S algorithm can be used to choose C so as to compensate for this condition.
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CHAPTER 7

~0NCLUSIONS AND FUTURE WORK 
S

The basic goal of this research is to replace the intuitive principles

behind current testing procedures by a methodology based on a formal treatment 
S

of the program testing problem. By formulating the problem in basic geometric

and algebraic terms, we have been able to develop an effective testing methodology

whose capabilities can be precisely defined. In addition, since program testing

cannot be completely effective , we have identified the limitations of the strategy.

In several cases these limitations have proven to be theoretical problems inherent

to the general program testing process.

The main contribution of this research is the development of the domain

testing strategy. Under certain well—defined conditions the methodology is

guaranteed to dete~t domain domain errors in linear borders greater than some small

magnitude £.  Furthermore , the cost , as measured by the number of required test

points, is reasonable and grows only linearly with both the dimensionality of the

input space domain and the number of path predicates. Domain testing also detects

transformation errors and missing path errors in many cases, but the detection of

these two classes of errors cannot be guaranteed.

Domain testing has also been extended to classes of nonlinear borders, and we

have shown that the methodology generalizes to any class of functions which can

be described by a finite number of parameters. Unfortunately, nonlinear predicates

pose problems of extra processing which probably preclude testing except for re—

stricted cases. For example, just f inding intersection points of a set of linear --
~ 

-

and nonlinear borders can require an inordinate amount of processi ng.

Coincidental correctness is a theoretical limitation inherent to the program

testing process , and we have argued tha t it prevents any reasonable finite testi ng

fl
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procedure from being completely reliable. In particular, the possibility of coin—

cidental correctness means tha t an exhaustive test of all points in an input

domain is theoretically required to preclude5 the existence of computation errors

on a path. Within the class of all computable functions there exist functions

which coincide at an arbitrarily large number of points, but if there is S

• sufficient resolution in the output space, coincidental correctness should be a

rare occurrence for functions cosmonly encountered in data processing problems.

- 

Tb. class of missing path errors , particularly those of reduced diinensionality,

has proven to be another theoretical limitation to the reliability of any finite

testing strategy . Although our methodology cannot be guaranteed to detect all

instances of this type or error , it can be extended to detect some well-defined

subclasses of missing path errors. Unfortunately, the extra cost of this modi—

fication may be unacceptably high. Our analysis of missing path errors has

shown that the cause of the difficulty is that the program does not contain any

indication of the possible existence of a missing path error. Therefore, without

- additional information, a reasonable testing strategy for this class of errors
5 

cannot be formulated.

The domain testing strategy requires a reasonable number of test points for

a single path, but the total cost may be unacceptable for a large program con-

taining an excessive number of paths. In particular, this may occur for large

programs with complicated control structures containing many iteration loops.

1_i Additional research is needed to substantially reduce the number of potential

paths. One area being investigated takes advantage of the fact that progrer

modules are often independent in that the control flow of one does not depend
- 

11 upon variables defined in the oth er. In this way the combinatorial growth of the

. :S~~~; 
Li number of domains to be tested can be controlled, and the domain strategy can be

[] made more practical It remains to be shown to what extent this independence

- [ I
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property can be applied, and experimental evidence is needed of how frequently

independent modules occur in widely available programs. L —

We have assumed that an “oracle” exists which can always determine whether -

a specific test case has been computed correctly or not. In reality, the

prograaner himself must make this determination, and the time spent examining

and analyzing these test cases is a major factor in the high cost of software 
S

development. One possible avenue for future research would be to automate this t S

process by using some form of input—output specification. If the user

provides a formal description of the expected results, the correctness of each

test case can be decided automatically by determining whether the output

specification is satisfied. This would reduce the cost of testing tre-

mendously, and these new testing techniques would gain acceptance more quickly

since the tedious task of verifying test data would be eliminated. In

addition, any extra information supplied by the user might be useful in

specifying special processing requirements which would indicate the existence

- of a possible missing path error.

The domain test strategy is currently being implemented , and will be

utilized as an experimental facility for subsequent research. Experiments

should indicate what sort of programeing errors are most difficult to detect,

and should yield extensive dynamic testing data. A most important contri-

bution would be to indicate both programming language constructs and programming

-
- 

‘ techniques which are easier to test, and thue would produce more reliable software. [
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